Abstracts

IAA22 Book of Abstracts (PDF)

Meeting Program/Schedule (PDF)

 

 VIEW MEETING PROGRAM ONLINE

 

 

LIST OF MEETING ABSTRACTS

NOTE: You may quickly navigate to a name you are looking for by clicking a letter below (first letter in their lastname).

ALL A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Oral | Posters


Oral Presentations

 

 

Day: 2, Session: 1, Talk: 3

Welcome Address

James W. Fetzner Jr. and Eric Dorfman

Welcome Address

 

 

Day: 2, Session: 2, Talk: 2

Female Form Alternation in American Cambarid Species

Tadashi Kawai

American Cambarid species are the most diverse group in the Infraorder Astacidea The group shares a unique key character state, Form Alternation (or Cyclic Dimorphism) of adult males. Form Alternation of isometric and allometric character growth is related to seasonal breeding. In summer Form I males capable of breeding have larger chelae, larger hooks on the ischia of their pereiopods, and cornified terminal elements of their 1st pleopods. They consequently molt to a non-breeding stage (Form II), which has smaller chelae, smaller hooks on the ischia of their pereiopods, and un-cornified terminal elements of their 1st pleopods. Adult Form II males molt back to Form I males for the next breeding season which normally runs in a yearly cycle. Recently it has been reported that Form Alternation also occurs in female members of Cambarus and Faxonius. Form I females display wider abdomens than same-size Form II females, and their annulus ventrali have un-cornified and a more convoluted crest along the longitudinal sinus, with a median sinus that reaches the caudal margin. The author visited the Department of Invertebrate Zoology, Smithsonian National Museum of Natural History to access Hobbs' collections. Museum specimens of adult females of four Procambarus and three Cambarellus species were examined to compare abdomen width and morphology of the annulus ventralus between breeding and non-breeding season specimens. Female Form Alternation (as listed above) was observed in all four Procambarus species; Procambarus allenii, P. clarkii, P. fallax, and P. pallidus. However, Form I females do not show wider abdomens than same-size Form II females. Cambarellus montezumae, Cambarellus patzcurensis, and Cambarellus zempoalensis did not show form alteration, and it is concluded that Cambarellus species do not undergo Form Alternation as member of Cambarus, Faxonius, and Procambarus do.

 

 

Day: 2, Session: 4, Talk: 4

An Update on the Distribution and Conservation Status of the Crayfishes of Alabama

STUART W. McGREGOR, Guenter A. Schuster, Christopher A. Taylor, Rebecca A. Bearden and E. Anne Wynn

Each state is required to have a State Wildlife Action Plan (SWAP) to be eligible for federal funds through the Wildlife Conservation Restoration Program (WCRP) or the State Wildlife Grants Program (SWG). For Alabama to move forward in conserving its aquatic species, a first step is understanding biodiversity patterns: What species do we have and where are they found? Second, it is important to know which species need conservation action. These fundamental levels of understanding did not exist for crayfishes in Alabama before our project. Starting in 2005 Drs. Guenter Schuster and Chris Taylor performed an exhaustive literature search and visited numerous museum collections and compiled a database with over 4,600 records documenting 85 crayfish species from Alabama. Subsequently, with funding supplied on two occasions by the SWG program and independently by the U.S. Fish and Wildlife Service, Geological Survey of Alabama staff, Drs. Schuster and Taylor, and associates sampled crayfish in areas of the state that showed a dearth of records based on maps generated from the Schuster and Taylor database and surveyed for species petitioned for listing by the U.S. Fish and Wildlife Service. The first SWG project (2008-10) added over 760 collection records, documented 64 of 85 species recognized from the state at that time, tightened collection coverage gaps, and recommended a preliminary conservation priority status for each species. In 2012, a group of subject matter experts convened in Auburn, Alabama, for the Third Nongame Wildlife Symposium and provided information on each species known from Alabama at the time. The result was an updated SWAP with conservation priority status designated for each species. Crayfish were included for the first time and 12 species were found to be of Highest Conservation Priority, 30 of High Conservation Priority, 15 of Moderate Conservation Priority, 14 of Low Conservation Priority, and 12 of Lowest Conservation Priority. Another important result of the first SWG project was the need to further close coverage gaps, further address undersampled habitats, and refine species-specific distributional information. The second SWG grant was secured to address those needs (2014-17). Final results of these studies yield about 9,300 records documenting 97 species of crayfishes (94 natives), with 15 state endemics, a few species whose taxonomic status remains unclear, a few undescribed taxa awaiting formal descriptions, and 5 hypothetical species. Another result was the opportunity to make preliminary conservation priority recommendations for species added to the state list or systematically reassigned during the latter phase of the project. We recommended 1 species status be changed to Highest Conservation Priority, 6 others added to Highest Conservation Priority, 4 to High Conservation Priority, 2 to Low Conservation Priority, and 1 to Lowest Conservation Priority. The state list will very likely surpass 100 species upon further research. During our studies 94 of the 97 species known from the state were encountered, with only 3 rare troglobites unobserved (but likely extant).

 

 

Day: 3, Session: 2, Talk: 5

A Nonnative Crayfish (Faxonius virilis) Use of an Eel Ladder, Potomac River Drainage, USA

STUART WESLH and Zachary J. Loughman

Fish passage facilities for reservoir dams have been used to restore habitat connectivity within riverine networks by allowing upstream passage for native species. These facilities may also support the spread of invasive species, an unintended consequence and potential downside of upstream passage structures. We documented dam passage of the invasive virile crayfish, Faxonius virilis, at fish ladders designed for upstream passage of American eels, Anguilla rostrata, in the Shenandoah River drainage, USA. Ladder use and upstream passage of 11 virile crayfish occurred during periods of low river discharge (<30 cubic meters per second) and within a wide range of water temperatures from 9.0–28.6°C. Virile crayfish that used the eel ladders had a mean carapace length and width of 48.0 mm and 24.1 mm, respectively. Our data demonstrated the use of species-specific fish ladders by a non-target non-native species, which has conservation and management implications for upstream passage facilities and the spread of aquatic invasive species.

 

 

Day: 3, Session: 3, Talk: 3

Multi-method Inference of Temperature Tolerance and Preference for a Native and an Invasive Crayfish

JACOB T. WESTHOFF, Chris Rice, Hisham Abdelrahman and James A. Stoeckel

Conservation and management of crayfishes can be informed through a greater understanding of crayfish thermal ecology, especially as it relates to the suitability of thermal habitats for native and invasive crayfish. We used a combination of behavioral and enzymatic endpoints to estimate temperature preference, optimal respiratory enzyme tolerance (ORET), and critical thermal maximum (CTM) for the imperiled native Coldwater Crayfish (Faxonius eupunctus) and the invasive Ringed Crayfish (Faxonius neglectus). Significant differences in these parameters would allow for thermal partitioning of space and thus enhance the probability of coexistence. Crayfish used in CTM and preference tests were acclimated at one of four temperatures (10, 15, 20, 25°C) for two weeks prior to testing, whereas ETS assays used crayfish acclimated at 21°C. Estimates of CTM were 33.9°C for F. eupunctus and 33.2°C for F. neglectus. Mixed linear model analysis of CTM data showed no difference between species or genders, but a strong effect of acclimation temperature (p-value < 0.01). Mixed linear model analysis using likelihood ratio tests indicated F. eupunctus preferred slightly colder water (19.6°C) than did F. neglectus (21.3°C; p-value = 0.03). That analysis also identified a significant difference (p-value = 0.01) between males (20.3°C) and females (21.0°C), but acclimation temperature and the interaction between gender and species were not significant. Mean ORET did not differ between F. eupunctus (28.4°C) and F. neglectus (28.5°C), but did differ from a third congener, Faxonius marchandi (29.7°C), based on two-way ANOVA results. For all species, ORET was higher than organismal thermal preference estimates, but lower than CTM, suggesting it may provide a useful breakpoint for managers. Management strategies should target temperature regimes that approach but do not exceed OET to increase the frequency of optimal temperature occurrences while minimizing the risk of exposing crayfish to their thermal maxima. Across all estimated metrics, F. eupunctus and F. neglectus differed by less than 2°C, indicating that significant biological difference is unlikely. Thus, habitats suitable for the native F. eupunctus will also be thermally available to the invasive F. neglectus, thereby increasing the opportunity for interaction and negative population effects.

 

 

Day: 3, Session: 3, Talk: 4

Normal Biochemistry of the Murray Crayfish Euastacus armatus (Parastacidae)

Martin Asmus, Shane Raidal and MAGGIE J. WATSON

Haemolymph samples were collected from wild and captive held adult male and female Murray Crayfish Euastacus armatus. Haematological analyses were performed in order to determine reference values for this species including protein, albumin, globulin, creatine kinase, aspartate transaminase, glutamate dehydrogenase, glucose, gamma-glutamyltransferase, potassium, sodium, calcium, phosphate, chloride, uric acid, cholesterol, amylase and bile acids. Additionally, protocols for measurements of phenoloxidase and prophenoloxidase (part of the non-specific immune system in crayfish which leads to the melanisation and sclerotisation in stressed animals) are being trialled. Alterations from these reference values can be used to determine stress and disease state of the crayfish. These tests are being used to monitor the health and stress levels of Murray Crayfish intended for use in a large-scale translocation of crayfish from healthy populations to areas of the Murray River that no longer support crayfish. Murray crayfish populations in affected parts of the river dropped by 81% in 2010–11 due to hypoxic water events.

 

 

Day: 3, Session: 4, Talk: 2

Investigation of the Salinity Tolerance and Life History of the Hammock Island Crayfish, Procambarus lunzi, in South Carolina, USA

ELIZABETH B. UNDERWOOD and Michael R. Kendrick

There are currently 38 confirmed species of freshwater crayfish in South Carolina, with nine of these found in the Sea Island/Coastal Marsh physiographic province (A.K.A. 'near-coastal zone') of the state. This includes Procambarus troglodytes, Procambarus lunzi, and the invasive Procambarus clarkii, among others. Crayfish in the near-coastal zone of South Carolina face numerous threats, including habitat destruction, invasive species, coastal flooding, sea-level rise, and storm surge. Sea level rise and storm surge events will likely lead to the salinization of near-coastal habitats, affecting crayfish that inhabit these wetlands. One crayfish species that will likely be affected by such salinization is the hammock (or hummock) island crayfish, Procambarus lunzi, which is the only crayfish known to inhabit hammock islands of South Carolina. Hammock islands are near-coastal upland features often consisting of maritime forest and depressional freshwater wetlands that are surrounded by salt marsh. Due to the isolated nature of its habitat and proximity of P. lunzi to the coast, potential conservation and management actions will need to consider how this species will respond to the effects of sea-level rise. The objectives of this research were to 1) Determine the salinity tolerance of 3 Procambarus species (P. lunzi, P. troglodytes, and P. clarkii) and 2) Assess life history of P. lunzi on a hammock island in South Carolina. For salinity tolerance trials of Procambarus lunzi, 32 individuals were collected from hammock island wetlands (salinities ranged from 0.3 to 7.0 psu) and exposed to one of two treatment conditions, 0 or 30 psu. Mean percent survival at the end of the first trial was 18.75%. It was hypothesized that the crayfish may have been previously stressed from high-salinity habitat conditions on the island and a second experimental trial was conducted. Crayfish from the first trial's 0 psu treatments (n=16) were kept in freshwater and fed every other day for two weeks. They were then placed in either 0 or 30 psu treatment tanks with each salinity treatment being replicated twice. Mean percent survival at the end of the seven-day trial was 100% at 0 psu, and 87.5% at 30 psu. Similar experiments were conducted with P. troglodytes and P. clarkii, and survival at 30 psu was 63% and 56%, respectively. The life history of P. lunzi is currently being assessed by re-sampling of a population on a hammock island. During each sampling event, post-orbital carapace length, sex, and reproductive state are recorded. Hourly measurements of temperature and salinity are also being recorded at the study location. A total of 50 crayfish have been sampled in December 2017 and February 2018 (30 females, 20 Form II males, and 0 Form I males) and salinities ranged from 3 to 6 psu. Although it is unclear how increased salinity affects fitness of these species, the findings in this study (high survivorship of Procambarus in high-salinity laboratory conditions and the collection of Procambarus lunzi from mesohaline wetlands), suggest that Procambarus is able to survive extended periods of increased salinities.


 

Poster Presentations

 

 

POSTER 52

History of Spring River Crayfish (Faxonius roberti) Collections in the Strawberry River, Arkansas

BRIAN K. WAGNER

The Spring River Crayfish (Faxonius roberti) was recently distinguished from the Coldwater Crayfish (Faxonius eupunctus). It encompasses former F. eupunctus range in the Spring and Strawberry river drainages of Missouri and Arkansas. The species was first detected in the Strawberry River basin in a tributary stream in 1972 and the main river in 1974, neither of which have yielded specimens in more recent sampling efforts. The next reported observation was in 2006 from the main stem at a low water crossing 17.6 km downstream. A 2010-11 range-wide study of F. eupunctus only collected 4 individuals from one site in the basin using a quantitative kick-seine method that was much more effective in the other basins, suggesting a much lower abundance in the Strawberry. Additional effort in 2011 utilizing snorkeling and hand capture of crayfish was able to extend the documented range downstream an additional 14.3 km from the 2006 collection. Beginning in 2016 efforts began to attain a more detailed understanding of the species' range in this river by kayaking between access points and conducting snorkel searches by 2-3 divers at every 2nd to 3rd riffle encountered. These efforts documented 8 additional sites, including one 9 km upstream of the 2006 site. In 2017 efforts continued by making kayak trips above and below the area surveyed in 2016, requiring kayaking back to the put-in point at the end of the survey. In the upstream collection this included searching an additional 2 km above the site of the 1974 collection, but did not locate any occupied sites in this direction. Downstream searches were more productive, extending the occupied stream reach by 17.1 km. Combined this documents that F. roberti currently occupies at minimum 15 sites over a 40.4 km section of the Strawberry River.

 

 

POSTER 56

Assessing Rarity Patterns in Crayfish at Multiple Spatial Scales Using Scale-area Curves

JOHN W. JOHANSEN, Hayden T. Mattingly, Christopher A. Taylor and Guenter A. Schuster

Identification of at-risk species often relies mostly on range size, particularly for poorly studied species. Although this provides a relatively efficient method for identifying species of conservation concern, it may lead to an inaccurate assignment of conservation status. For example, many species occupy small native ranges but are locally abundant and temporally stable. Additionally, extinction processes operate at different spatial-scales. Scale-area curves provide a framework that examines rarity at multiple spatial scales, and thus, can lead to development of more impactful conservation strategies. Using a well-vetted database of Alabama crayfish collections, we used measures of area of occupancy to construct scale-area curves and assess rarity patterns for lotic crayfishes at two spatial scales: 1 km2 and 100 km2. Area of occupancy (AOO) is a measure of range size that varies depending on the spatial-scale of interest. For each species, AOO was estimated by counting the number of occupied cells in nested grids at increasing user-defined areas. In addition to AOO, the degree of range fragmentation was determined for each species from the slope of the scale-area curve at each spatial scale. Principle components analysis was used to identify scale-specific patterns of rarity. For example, at the 1 km2 spatial scale, we identified 5 groups of species based on AOO and degree of range fragmentation while at the 100 km2 scale six groups were identified. At the 1 km2 scale, several state imperiled species (S2) had higher levels of fragmentation than many critically imperiled species (S1). This indicates the lower ranked (S2) species may actually be more susceptible to loss of local populations due to increased range fragmentation. Accordingly, understanding metapopulation dynamics and maintaining habitat connectivity should be a priority for this subset of state imperiled (S2) species. This demonstrates the need to examine multiple variables and spatial scales in prioritizing species of conservation concern, particularly for those species that lack basic biological and ecological data beyond range size.

 

 

POSTER 57

Water Quality Analysis and Habitat Threats Concerning Cambarus cracens on Sand Mountain in Northeast Alabama

Rebecca A. Bearden, E. Anne Wynn, Patrick E. O’Neil, STUART W. McGREGOR, Guenter A. Schuster and Christopher A. Taylor

Understanding habitat threats for species of concern is paramount for establishing effective conservation strategies. Although the Slenderclaw Crayfish, Cambarus cracens, was found in the 1970s at five sites in Scarham, Short, and Town creeks on Sand Mountain in northeast Alabama, surveys in 2011 found the species at only a single site in Scarham Creek. Our goals were to determine the current range of this species and identify any water quality issues or habitat threats that may be causing its decline. We conducted status surveys for C. cracens at 71 sites in northeastern Alabama and northwestern Georgia from 2015 to 2017 and collected the species in low abundance at five sites in Scarham and Town creeks. We also collected the invasive Virile Crayfish, Faxonius virilis, in Short Creek, revealing a possible recent threat to the status of C. cracens. Our water quality surveys in Scarham, Short, and Town creeks in 2015 and 2016 revealed elevated levels of ammonia, nitrate and phosphorus, concentrations of lead and zinc that exceeded aquatic life criteria, the presence of pesticides, and concentrations of bacteria that exceeded established limits. Our land use analysis confirmed intense poultry production and high levels of human disturbance in Scarham, Short, and Town creeks. In order to conserve remaining populations of C. cracens, we recommend continued efforts at establishing watershed projects to reduce pollutant loads, promoting best management practices for agriculture, and monitoring future water-quality trends to help assure the integrity of water quality in these tributaries and assist in improving habitat quality throughout the Scarham, Short, and Town Creek watersheds.

 

 

POSTER 58

An Assessment of Cambarus spicatus, Broad River Spiny Crayfish

RILEY W. AULICK and Zachary J. Loughman

The Broad River Spiny crayfish, Cambarus spicatus, is endemic to the Broad River and some of its tributaries. Few life history studies of C. spicatus have caused the IUCN to list it as data deficient. The goal of this study was to determine the impacts of land development on the distribution of C. spicatus. In the summer of the 2017, the West Liberty University Crayfish Conservation Research Lab surveyed the Catawba watershed in North Carolina and the Broad and Saluda watersheds in South Carolina in search of C. spicatus. A standard protocol of ten seine hauls per riffle was implemented in one hundred and twenty-three streams. Dip nets were used in addition to seines to survey the banks of the streams. ArcMap, an application of ArcGIS, was utilized by adding layers such as land cover and a buffer around each collection area which provided land type percentages for each survey site. Six individuals from four sites in North Carolina and one individual from South Carolina were collected out of a total of one-hundred and twenty-three sites. According to the models, C. spicatus was least likely to be found in areas developed for agriculture and urban development. This study provides strong evidence that land development is negatively impacting C. spicatus distribution. Additional studies are needed throughout the species range to make a final determination that land development has a negative impact on C. spicatus.

 

 

POSTER 65

Analysis of Species-environmental Relationships with Variance Partitioning and Distance-based Moran Eigenvector Maps: Application for Crayfish Distribution and Community Models

WILLIAM R. BUDNICK, Sophia I. Passy and Michael D. Kaller

Advances in numerical ecology have developed robust modeling techniques that can include spatial information in analyses of species-environmental relationships. We demonstrate how variance partitioning and distance-based Moran eigenvector maps (dbMEM) can determine which spatial scales that environmental factors structure crayfish communities and distributions. We sampled 56 streams from 5 major Louisiana river drainages from 2013-2014. Variance partitioning with redundancy analyses of environmental factors and geographic spatial distances produced a poor model fit and great environmental-spatial covariance, which confounded interpretation. However, including orthogonal spatial variables obtained from dbMEM not only improved model fits, but elucidated which environmental variables constrained community composition across spatial scales, namely among drainages (broad scale), within drainages (intermediate scale) and within stream (small scale). Presence of sand, specific conductance, and stream depth were important community drivers across scales, but presence of clay and grassy banks were more locally important. Temperature, a climatic factor, was important at broad scales. Our methods provided valuable insight into the relevant scales of environmental influence on crayfish and it is our hope that we see wider adoption of these methods for future work.

 

 

POSTER 67

Another Cautionary Tale of Numts: Multiple Different Copies of the COI Gene in the Camp Shelby Burrowing Crayfish (Fallicambarus gordoni)

JAMES W. FETZNER JR.

During a preliminary phylogeographic study conducted several years ago involving the Camp Shelby Burrowing Crayfish (Fallicambarus gordoni) it was noted that most of the generated COI barcode sequences were “messy” (i.e., contained multiple peaks at many sites along the length of the sequence), suggesting some sort of contamination was being co-amplified. This messy data was so prevalent (almost every specimen) that it ultimately eroded confidence in the base calls for the region sequenced and led to the termination of the project due to a very limited sequencing budget that had already been expended. In order to investigate the source of this contamination, COI PCR products from eight F. gordoni individuals (one from each sampled site), plus one specimen of another Fallicambarus species, were subsequently cloned. Eight individual colonies per individual were picked, amplified, and sequenced to see if the source of the contamination could be identified (i.e., as bacterial, human, pseudogene, or other). Checking the sequences using Genbank BLAST searches revealed that the sequences were most closely related to COI genes from the genus Fallicambarus, suggesting they are additional copies present within the genome, rather than contaminant DNA from an external source (i.e., bacterial). The results suggested that multiple different copies of the COI gene appear to be present within the genome of F. gordoni individuals, often containing multiple point mutations and/or length differences (=indels), which directly resulted in the messy sequences seen during the original project. In some cases, the sequences appeared to be pseudogenes because they often contained multiple stop codons. This study provides another cautionary tale about numts (nuclear copies of mitochondrial genes) and making sure they are accounted for when analyzing mitochondrial datasets in phylogeographic and systematic studies of freshwater crayfish.

 

 

POSTER 71

A Night of Devastation: Natural and Life History Observations of an En-masse Single Night Collection of Fallicambarus devastator

ZACHARY W. DILLARD, Katie Scott, Nicole M. Sadecky, Luke K. Sadecky and Zachary J. Loughman

Due to their fossorial tendencies, primary burrowing crayfish are the most difficult behavioral group of crayfish to study in-situ. In this study we elucidated both natural and life history aspects and intraspecific behaviors from a collection of 111 individual Fallicambarus devastator collected in Angelina County, Texas, on the night of May 15th, 2015. We also intend to emphasize the importance of environmental cues on collection success. Significant amounts of precipitation occurred during the days prior to collection efforts, resulting in the majority of burrows to be flooded on the day of collection. All animals were collected either traversing the landscape or captured at the portal of their burrow. Behaviors observed included excavation, respiration, feeding, and interspecific interactions. The majority of animals observed were adults, with juveniles noticeably absent on the surface. Life history observations included evidence of synchronous alteration to reproductive form in males, as well as sexually-dependent chelae morphometric ratios. Fallicambarus devastator meristically displayed sexual dimorphism between form I male and female chelae, with form I chelae having longer propodus length and greater palm widths compared to the squamous and shorter chelae of females. Understanding the significance of studying these animals in favorable conditions is of paramount importance to the quality of future primary burrowing crayfish research.

 

 

POSTER 77

The Crayfish Morphology Database: Developing an Online Platform for Maintaining and Sharing Specimen Data and Images Used in the Descriptions of New Crayfish Species

JAMES W. FETZNER JR.

A new online database, and associated website, are under development with the goal of capturing, maintaining and sharing a standard suite of morphological measurement data and specimen images used in the description of new freshwater crayfish species. The website is password protected, allowing authors to secure their project data under a user account that only they can access. Once published, their data could become available to the community. The site consists of eight tabbed web forms that capture information on field collections, geographic locality, and specimen-level morphological measurements broken out by major feature (e.g., Carapace, Rostrum, Chela, Gonopod, and ‘Miscellaneous’). A tab is also provided to upload specimen images captured from a variety of views. The database currently is set up for capturing data on North American taxa, but if there is interest from the community, this could be expanded to include other crayfish groups from around the globe. Measurement data can be entered automatically into the web form via a digital caliper connected to a computer, or entered manually. A standard set of photographic images can also be captured and annotated, and then uploaded to the project, making them available for side-by-side viewing, allowing for multiple specimen comparisons of various morphological features. Features such as simple statistical analyses of the data (counts, frequencies, etc.) still need to be implemented, but could be generated and output as a summary report. The full project data can also be output to Excel format to allow for more detailed statistical analyses. Most of the data presented in new species descriptions are just estimates of the mean and/or the range of values measured. Thus, all of the underlying data captured for each individual specimen in a study are often lost to science, unless the specimens have been designated as types. Having a repository for these types of data will help to make comparisons among species a lot easier in the future and will reduce the duplication of effort when making comparisons among multiple species.

 

 

POSTER 78

Morphometric and Genetic Evidence of Population Heterogeneity in the Narrow-clawed Crayfish from Belarus

KAROLINA ŚLIWIŃSKA, Agata Mruga?a, Molotkov V. Dimitry, Radek Šanda and Anatoly V. Alekhnovich

The narrow-clawed crayfish, Astacus leptodactylus (Eschscholtz, 1823) is one of the two native European crayfish species in Belarus. Although it is a widespread species of high economic importance in this country, the recent expansion of the invasive alien crayfish species endanger the sustainability of its stocks within Belarus. Nevertheless, A. leptodactylus taxonomical status is under debate across its whole range, and it is currently considered as a species complex. Indeed, the occurrence of various morphological forms within its native range has been extensively described in early scientific literature. Moreover, based on molecular data, A. leptodactylus populations have been recently divided into European and Asian lineages; a division confirmed also by comparative morphological analyses of genetically distinct Armenian and Croatian populations. Yet detailed information on the diversity of narrow-clawed crayfish remains still scarce, especially in its native distribution range. Therefore, our study aimed to evaluate the diversity of A. leptodactylus within two different drainages (Baltic and Black Sea) in Belarus, based on morphological (multivariate statistics) and genetic (mtDNA COI gene) analyses. As a result of molecular analyses, the studied populations were clustered into two distinct phylogroups, corresponding to the previously published A. leptodactylus lineages. Furthermore, the multivariate morphometric analyses confirmed this clustering, and indicated that variability of studied populations is especially expressed in abdomen and cephalothorax parameters. The obtained results suggest that A. leptodactylus may have a double origin within the territory of Belarus, and therefore, provide important information for the conservation and management of this native crayfish species.


Oral Presentations from IAA22

Day 1

  
  
  

Poster Presentations

General Assembly

Meeting Photo Gallery

There are currently no photos from this meeting to display.

 

 

Member Login

Forgot Your Password?

Recover PW

Enter the e-mail address you used to
create your IAA account.
Return to Login
Back to Top